AD-SVMs: A light extension of SVMs for multicategory classification
نویسندگان
چکیده
The margin maximization principle implemented by binary Support Vector Machines (SVMs) has been shown to be equivalent to find the hyperplane equidistant to the closest points belonging to the convex hulls that enclose each class of examples. In this paper, we propose an extension of SVMs for multicategory classification which generalizes this geometric formulation. The obtained method preserves the form and complexity of the binary case, optimizing a single convex quadratic program where each new class introduces just one additional constraint. Reduced convex hulls and non-linear kernels, used in the binary case to deal with the ∗This work was supported by the Research Grant Fondecyt 1070220, Chile. The work of C. Moraga was partially supported by the Foundation for the Advancement of Soft Computing, Mieres Spain. non-linearly separable case, can be also implemented by our algorithm to obtain additional flexibility. Experimental results in well known datasets are presented, comparing our method with two widely used multicategory
منابع مشابه
تعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملA Comparison of SVM-based Evolutionary Methods for Multicategory Cancer Diagnosis using Microarray Gene Expression Data
Selection of relevant genes that will give higher accuracy for sample classification (for example, to distinguish cancerous from normal tissues) is a common task in most microarray data studies. An evolutionary method based on generalization error bound theory of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently. The bound theo...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملMulticategory Support Vector Machines
The Support Vector Machine (SVM) has shown great performance in practice as a classification methodology. Oftentimes multicategory problems have been treated as a series of binary problems in the SVM paradigm. Even though the SVM implements the optimal classification rule asymptotically in the binary case, solutions to a series of binary problems may not be optimal for the original multicategor...
متن کاملReinforced Multicategory Support Vector Machines
Support vector machines are one of the most popular machine learning methods for classification. Despite its great success, the SVM was originally designed for binary classification. Extensions to the multicategory case are important for general classification problems. In this article, we propose a new class of multicategory hinge loss functions, namely reinforced hinge loss functions. Both th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Hybrid Intell. Syst.
دوره 6 شماره
صفحات -
تاریخ انتشار 2009